Array¶
- class Array(dtype: str | Dtype, initializer: Iterable | int | Array | array.array | Bits | bytes | bytearray | memoryview | BinaryIO | None = None, trailing_bits: BitsType | None = None)¶
Create a new
Array
whose elements are set by the dtype (data-type) string orDtype
. This can be any format which has a fixed length. See Format tokens and Compact format strings for details on allowed dtype strings, noting that only formats with well defined bit lengths are allowed.The inititalizer will typically be an iterable such as a list, but can also be many other things including an open binary file, a bytes or bytearray object, another
bitstring.Array
or anarray.array
. It can also be an integer, in which case theArray
will be zero-initialised with that many items.>>> bitstring.Array('i4', 8) Array('int4', [0, 0, 0, 0, 0, 0, 0, 0])
The trailing_bits typically isn’t used in construction, and specifies bits left over after interpreting the stored binary data according to the data type dtype.
The Array
class is a way to efficiently store data that has a single type with a set length.
The bitstring.Array
type is meant as a more flexible version of the standard array.array
, and can be used the same way.
import array
import bitstring
x = array.array('f', [1.0, 2.0, 3.14])
y = bitstring.Array('=f', [1.0, 2.0, 3.14])
assert x.tobytes() == y.tobytes()
This example packs three 32-bit floats into objects using both libraries.
The only difference is the explicit native endianness for the format string of the bitstring version.
The bitstring Array’s advantage lies in the way that any fixed-length bitstring format can be used instead of just the dozen or so typecodes supported by the array
module.
For example 'uint4'
, 'bfloat'
or 'hex12'
can be used, and the endianness of multi-byte dtypes can be properly specified.
Each element in the Array
must then be something that makes sense for the dtype
.
Some examples will help illustrate:
from bitstring import Array
# Each unsigned int is stored in 4 bits
a = Array('uint4', [0, 5, 5, 3, 2])
# Convert and store floats in 8 bits each
b = Array('p3binary', [-56.0, 0.123, 99.6])
# Each element is a 7 bit signed integer
c = Array('int7', [-3, 0, 120])
You can then access and modify the Array
with the usual notation:
a[1:4] # Array('uint4', [5, 5, 3])
b[0] # -56.0
c[-1] # 120
a[0] = 2
b.extend([0.0, -1.5])
Conversion between Array
types can be done using the astype
method.
If elements of the old array don’t fit or don’t make sense in the new array then the relevant exceptions will be raised.
>>> x = Array('float64', [89.3, 1e34, -0.00000001, 34])
>>> y = x.astype('float16')
>>> y
Array('float16', [89.3125, inf, -0.0, 34.0])
>>> y = y.astype('p4binary')
>>> y
Array('p4binary', [88.0, 240.0, 0.0, 32.0])
>>> y.astype('uint8')
Array('uint8', [88, 240, 0, 32])
>>> y.astype('uint7')
bitstring.CreationError: 240 is too large an unsigned integer for a bitstring of length 7. The allowed range is [0, 127].
You can also reinterpret the data by changing the dtype
property directly.
This will not copy any data but will cause the current data to be shown differently.
>>> x = Array('int16', [-5, 100, -4])
>>> x
Array('int16', [-5, 100, -4])
>>> x.dtype = 'int8'
>>> x
Array('int8', [-1, -5, 0, 100, -1, -4])
The data for the array is stored internally as a BitArray
object.
It can be directly accessed using the data
property.
You can freely manipulate the internal data using all of the methods available for the BitArray
class.
The Array
object also has a trailing_bits
read-only data member, which consists of the end bits of the data
that are left over when the Array
is interpreted using the dtype
.
Typically trailing_bits
will be an empty BitArray
but if you change the length of the data
or change the dtype
specification there may be some bits left over.
Some methods, such as append
and extend
will raise an exception if used when trailing_bits
is not empty, as it not clear how these should behave in this case.
You can however still use insert
which will always leave the trailing_bits
unchanged.
The dtype
string can be a type code such as '>H'
or '=d'
but it can also be a string defining any format which has a fixed-length in bits, for example 'int12'
, 'bfloat'
, 'bytes5'
or 'bool'
.
Note that the typecodes must include an endianness character to give the byte ordering.
This is more like the struct
module typecodes, and is different to the array.array
typecodes which are always native-endian.
The correspondence between the big-endian type codes and bitstring dtype strings is given in the table below.
Type code |
bitstring dtype |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The endianness character can be '>'
for big-endian, '<'
for little-endian or '='
for native-endian ('@'
can also be used for native-endian).
In the bitstring dtypes the default is big-endian, but you can specify little or native endian using 'le'
or 'ne'
modifiers, for example:
Type code |
bitstring dtype |
---|---|
|
|
|
|
|
|
Note that:
The
array
module’s native endianness means that different packed binary data will be created on different types of machines. Users may find that behaviour unexpected which is why endianness must be explicitly given as in the rest of the bitstring module.The
'u'
type code from thearray
module isn’t supported as its length is platform dependent.The
'e'
type code isn’t one of thearray
supported types, but it is used in thestruct
module and we support it here.The
'b'
and'B'
type codes need to be preceded by an endianness character even though it makes no difference which one you use as they are only 1 byte long.
Methods¶
- Array.append(x: float | int | str | bytes) None ¶
Add a new element with value x to the end of the Array. The type of x should be appropriate for the type of the Array.
Raises a
ValueError
if the Array’s bit length is not a multiple of its dtype length (seetrailing_bits
).
- Array.astype(dtype: Dtype | str) Array ¶
Cast the
Array
to the new dtype and return the result.>>> a = Array('float64', [-990, 34, 1, 0.25]) >>> a.data BitArray('0xc08ef0000000000040410000000000003ff00000000000003fd0000000000000') >>> b = a.astype('float16') >>> b.data BitArray('0xe3bc50403c003400') >>> a == b Array('bool', [True, True, True, True])
- Array.byteswap() None ¶
Change the byte endianness of each element.
Raises a
ValueError
if the format is not an integer number of bytes long.>>> a = Array('uint32', [100, 1, 999]) >>> a.byteswap() >>> a Array('uint32', [1677721600, 16777216, 3875733504]) >>> a.dtype = 'uintle32' >>> a Array('uintle32', [100, 1, 999])
- Array.count(value: float | int | str | bytes) int ¶
Returns the number of elements set to value.
>>> a = Array('hex4') >>> a.data += '0xdeadbeef' >>> a Array('hex4', ['d', 'e', 'a', 'd', 'b', 'e', 'e', 'f']) >>> a.count('e') 3
For floating point types, using a value of
float('nan')
will count the number of elements for whichmath.isnan()
returnsTrue
.
- Array.equals(other: Any) bool ¶
Equality test - other can be either another bitstring Array or an
array
. ReturnsTrue
if the dtypes are equivalent and the underlying bit data is the same, otherwise returnsFalse
.>>> a = Array('u8', [1, 2, 3, 2, 1]) >>> a[0:3].equals(a[-1:-4:-1]) True >>> b = Array('i8', [1, 2, 3, 2, 1]) >>> a.equals(b) False
To compare only the values contained in the Array, extract them using
tolist
first:>>> a.tolist() == b.tolist() True
Note that the
==
operator will perform an element-wise equality check and return a newArray
of dtype'bool'
(or raise an exception).>>> a == b Array('bool', [True, True, True, True, True])
- Array.extend(iterable: Iterable | Array) None ¶
Extend the Array by constructing new elements from the values in a list or other iterable.
The iterable can be another
Array
or anarray.array
, but only if the dtype is the same.>>> a = Array('int5', [-5, 0, 10]) >>> a.extend([3, 2, 1]) >>> a.extend(a[0:3] // 5) >>> a Array('int5', [-5, 0, 10, 3, 2, 1, -1, 0, 2])
- Array.fromfile(f: BinaryIO, n: int | None = None) None ¶
Append items read from a file object.
- Array.insert(i: int, x: float | int | str | bytes) None ¶
Insert an item at a given position.
>>> a = Array('p3binary', [-10, -5, -0.5, 5, 10]) >>> a.insert(3, 0.5) >>> a Array('p3binary', [-10.0, -5.0, -0.5, 0.5, 5.0, 10.0])
- Array.pop(i: int | None = None) float | int | str | bytes ¶
Remove and return the item at position i.
If a position isn’t specified the final item is returned and removed.
>>> Array('bytes3', [b'ABC', b'DEF', b'ZZZ']) >>> a.pop(0) b'ABC' >>> a.pop() b'ZZZ' >>> a.pop() b'DEF'
- Array.pp(fmt: str | None = None, width: int = 120, show_offset: bool = True, stream: TextIO = sys.stdout) None ¶
Pretty print the Array.
The format string fmt defaults to the Array’s current
dtype
, but any other valid Array format string can be used.If a fmt doesn’t have an explicit length, the Array’s
itemsize
will be used.A pair of comma-separated format strings can also be used - if both formats specify a length they must be the same. For example
'float, hex16'
or'u4, b4'
.The output will try to stay within width characters per line, but will always output at least one element value.
Setting show_offset to
False
will hide the element index on each line of the output.An output stream can be specified. This should be an object with a
write
method and the default issys.stdout
.>>> a = Array('u20', bytearray(range(100))) >>> a.pp(width=70, show_offset=False) <Array fmt='u20', length=40, itemsize=20 bits, total data size=100 bytes> [ 16 131844 20576 460809 41136 789774 61697 70163 82257 399128 102817 728093 123378 8482 143938 337447 164498 666412 185058 995377 205619 275766 226179 604731 246739 933696 267300 214085 287860 543050 308420 872015 328981 152404 349541 481369 370101 810334 390662 90723 ]
>>> a.pp('hex32', width=70) <Array fmt='hex32', length=25, itemsize=32 bits, total data size=100 bytes> [ 0: 00010203 04050607 08090a0b 0c0d0e0f 10111213 14151617 18191a1b 7: 1c1d1e1f 20212223 24252627 28292a2b 2c2d2e2f 30313233 34353637 14: 38393a3b 3c3d3e3f 40414243 44454647 48494a4b 4c4d4e4f 50515253 21: 54555657 58595a5b 5c5d5e5f 60616263 ]
>>> a.pp('i12, hex', show_offset=False, width=70) <Array fmt='i12, hex', length=66, itemsize=12 bits, total data size=100 bytes> [ 0 258 48 1029 96 1800 : 000 102 030 405 060 708 144 -1525 192 -754 241 17 : 090 a0b 0c0 d0e 0f1 011 289 788 337 1559 385 -1766 : 121 314 151 617 181 91a 433 -995 481 -224 530 547 : 1b1 c1d 1e1 f20 212 223 578 1318 626 -2007 674 -1236 : 242 526 272 829 2a2 b2c 722 -465 771 306 819 1077 : 2d2 e2f 303 132 333 435 867 1848 915 -1477 963 -706 : 363 738 393 a3b 3c3 d3e 1012 65 1060 836 1108 1607 : 3f4 041 424 344 454 647 1156 -1718 1204 -947 1252 -176 : 484 94a 4b4 c4d 4e4 f50 1301 595 1349 1366 1397 -1959 : 515 253 545 556 575 859 1445 -1188 1493 -417 1542 354 : 5a5 b5c 5d5 e5f 606 162 ] + trailing_bits = 0x63
By default the output will have colours added in the terminal. This can be disabled - see
bitstring.options.no_color
for more information.
- Array.reverse() None ¶
Reverse the order of all items in the Array.
>>> a = Array('>L', [100, 200, 300]) >>> a.reverse() >>> a Array('>L', [300, 200, 100])
- Array.tobytes() bytes ¶
Return Array data as bytes object, padding with zero bits at the end if needed.
>>> a = Array('i4', [3, -6, 2, -3, 2, -7]) >>> a.tobytes() b':-)'
- Array.tofile(f: BinaryIO) None ¶
Writes the Array data to the file object f, which should have been opened in binary write mode.
The data written will be padded at the end with between zero and seven
0
bits to make it byte aligned. The file object remains open so the user must call .close() on it once they are finished.:
- Array.tolist() List[float | int | str | bytes] ¶
Return Array items as a list.
Each packed element of the Array is converted to an ordinary Python object such as a
float
or anint
depending on the Array’s format, and returned in a Python list.
Special Methods¶
Type promotion¶
Many operations can be performed between two Array
objects.
For these to be valid the dtypes of the Array
objects must be numerical, that is they must represent an integer or floating point value.
Some operations have tighter restrictions, such as the shift operators <<
and >>
requiring integers only.
The dtype of the resulting Array
is calculated by applying these rules:
Rule 0: For comparison operators (<
, >=
, ==
, !=
etc.) the result is always an Array
of dtype 'bool'
.
For other operators, one of the two input Array
dtypes is used as the output dtype by applying the remaining rules in order until a winner is found:
Rule 1: Floating point types always win against integer types.
Rule 2: Signed integer types always win against unsigned integer types.
Rule 3: Longer types win against shorter types.
Rule 4: In a tie the first type wins.
Some examples should help illustrate:
Rule 0 |
|
|
|
→ |
|
Rule 1 |
|
|
|
→ |
|
Rule 2 |
|
|
|
→ |
|
Rule 3 |
|
|
|
→ |
|
Rule 4 |
|
|
|
→ |
|
Comparison operators¶
Comparison operators can operate between two Array
objects, or between an Array
and a scalar quantity (usually a number).
Note that they always produce an Array
of dtype
'bool'
, including the equality and inequality operators.
To test the boolean equality of two Arrays use the equals
method instead.
Numerical operators¶
Bitwise operators¶
Python language operators¶
- Array.__len__(self) int ¶
len(a)
Return the number of elements in the Array.
>>> a = Array('uint20', [1, 2, 3]) >>> len(a) 3 >>> a.dtype = 'uint1' >>> len(a) 60
- Array.__getitem__(self, key: int | slice) float | int | str | bytes | Array ¶
a[i]
a[start:end:step]
- Array.__setitem__(self, key: int | slice, value) None ¶
a[i] = x
a[start:end:step] = x
- Array.__delitem__(self, key: int | slice) None ¶
del a[i]
del[start:end:step]
Properties¶
- Array.data: BitArray¶
The bit data of the
Array
, as aBitArray
. Read and write, and can be freely manipulated with allBitArray
methods.Note that some
Array
methods such asappend
andextend
require thedata
to have a length that is a multiple of theArray
’sitemsize
.
- Array.dtype: Dtype¶
The data type used to initialise the
Array
type. Read and write.Changing the
dtype
for an already formedArray
will cause all of the bit data to be reinterpreted and can change the length of theArray
. However, changing thedtype
won’t change the underlying bit data in any way.Note that some
Array
methods such asappend
andextend
require the bit data to have a length that is a multiple of theArray
’sitemsize
.
- Array.itemsize: int¶
The size in bits of each item in the
Array
. Read-only.Note that this gives a value in bits, unlike the equivalent in the
array
module which gives a value in bytes.>>> a = Array('>h') >>> b = Array('bool') >>> a.itemsize 16 >>> b.itemsize 1
- Array.trailing_bits: BitArray¶
A
BitArray
object equal to the end of thedata
that is not a multiple of theitemsize
. Read only.This will typically be an empty
BitArray
, but if thedtype
or thedata
of anArray
object has been altered after its creation then there may be left-over bits at the end of the data.Note that any methods that append items to the
Array
will fail with aValueError
if there are any trailing bits.